Bank Soal dan Pembahasan Matematika Dasar Statistika Data Berkelompok
Catatan calon guru yang kita diskusikan saat ini akan membahas tentang Matematika Dasar Statistika Data Berkelompok. Matematika dasar statistik data berkelompok ini adalah pengembangan dari statistika data tunggal, jadi untuk memudahkan pemahaman statistik data berkelompok ini, setidaknnya kita sudah sedikit paham tentang statistika data tunggal. Karena statistik data tunggal adalah salah satu syarat perlu, agar lebih cepat dalam belajar statistik data berkelompok.
Penerapan statistik data berkelompok dalam kehidupan sehari-hari juga sangat banyak, diantaranya dapat dilihat pada soal-soal yang kita diskusikan di bawah ini. Mempelajari dan menggunakan aturan-aturan pada statistik data berkelompok juga sangatlah mudah, jika Anda mengikuti step by step yang kita diskusikan dibawah ini, maka anda akan dengan mudah memahami soal-soal statistik data berkelompok dan menemukan solusinya.
Sekarang kita coba diskusikan bagaimana soal-soal yang sudah pernah diujikan pada UN atau SBMPTN tentang statistika untuk data berkelompok. Statistika untuk data berkleompok lebih sering diujikan pada Ujian Nasional daripada SBMPTN atau SMMPTN. Masalah yang diujikan juga terfokus kepada ukuran pemusatan data (rata-rata, modus dan median) dan ukuran letak data (kuartil, desil dan persentil).
Untuk lebih jauh mengetahui bagaimana menyelesaikan soal atau masalah statisktika untuk data berkelompok bisa kita simak dari beberapa contoh soal berikut;
1. Soal UM UNDIP 2009 (*Soal Lengkap)
Perhatikan tabel berikut!
Siswa yang dinyatakan lulus jika nilai ujiannya lebih besar dari $60$. Jika banyaknya peserta ujian ada $30$ orang dan yang lulus $16$ orang, maka nilai dari $xy= \cdots$
Nilai Ujian Frekuensi $21-30$ $1$ $31-40$ $1$ $41-50$ $x$ $51-60$ $9$ $61-70$ $y$ $71-80$ $6$ $81-90$ $2$
$\begin{align}
(A)\ 18 \\
(B)\ 20 \\
(C)\ 24 \\
(D)\ 25 \\
(E)\ 30
\end{align}$
Untuk soal ini kemampuan kita yang diharapkan adalah logika kemampuan dalam memabaca data berkelompok, karena data yang disajikan dalam tabel tidak lengkap.
Jumlah total frekuensi adalah $19+x+y$.
Jumlah yang lulus lebih dari $60$ yaitu $y+6+2=y+8$
Diketahui jumlah peserta yang lulus adalah $16$ orang, maka $y+8=16\ \rightarrow y=8$.
Diketahui jumlah peserta yang ujian adalah $30$ orang dan $y=8$, maka $19+x+y=30\ \rightarrow x=3$.
Nilai $xy=3 \cdot 8=24$
$\therefore$ Pilihan yang sesuai $(C)\ 24$
2. Soal UNBK Matematika IPS 2018 (*Soal Lengkap)
Perhatikan tabel berikut!
Modus dari tabel tersebut adalah...
Nilai Frekuensi $40-44$ $3$ $45-49$ $4$ $50-54$ $11$ $55-59$ $15$ $60-64$ $7$
$\begin{align}
(A)\ 51,12 \\
(B)\ 55,17 \\
(C)\ 55,72 \\
(D)\ 56,17 \\
(E)\ 56,67
\end{align}$
Modus adalah nilai yang paling sering muncul atau frekuensi yang paling besar.
Untuk data tunggal modus suatu data mudah ditemukan, tetapi untuk data berkelompok modus data sedikit lebih rumit.
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \frac{d_1}{d_1 + d_2} \right) c$
dimana;
$Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Dari tabel terlihat bahwa kelas yang memiliki frekuensi tertinggi adalah kelas $55-59$ dengan frekuensi $15$, maka kelas modusnya adalah kelas ke-4 dengan interval $55-59$; $(Tb_{mo} = 55 - 0,5 = 54,5)$;
$d_1:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus; $(d_{1}=15-11=4)$;
$d_2:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus; $(d_{2}=15-7=8)$;
$c:$ Panjang Kelas $(c=59,5-54,5=5)$;
$ \begin{align}
Mo & = Tb_{mo} + \left( \frac{d_1}{d_1 + d_2} \right) c \\
& = 54,5 + \left( \frac{4}{4 + 8} \right) \cdot 5 \\
& = 54,5 + \left( \frac{4}{12} \right) \cdot 5 \\
& = 54,5 + \frac{20}{12} \\
& = 54,5 + 1,67 \\
& = 56,17\ (D)
\end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 56,17$
3. Soal UNBK Matematika IPS 2018 (*Soal Lengkap)
Kuartil bawah dari data pada tabel berikut adalah.
$\begin{align}
Nilai Frekuensi $51-60$ $5$ $61-70$ $4$ $71-80$ $20$ $81-90$ $7$ $91-100$ $4$
(A)\ 70,0 \\
(B)\ 70,5 \\
(C)\ 71,0 \\
(D)\ 72,5 \\
(E)\ 73,0
\end{align} $
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=40$.
Untuk meneNtukan letak $Q_{1}$ ada pada data ke- $\left[\frac{1}{4}(n+1) \right]$
$Q_{1}$ terletak pada data ke- $\left[\frac{1}{4}(40+1) \right]=10,25$
$Q_{1}$ pada data ke-$10,25$ artinya $Q_{1}$ berada pada kelas interval $71-80$
Tepi bawah kelas $Q_{1}$: $71-80$
$t_{b}= 71 - 0,5 = 70,5 $
Frekuensi kumulatif sebelum kelas $Q_{1}$,
$f_{k}= 4+5=9$
Frekuensi kelas $Q_{1}$, $f_{Q_{1}}=20$
Panjang kelas $c=80,5-70,5=10$
$ \begin{align}
Q_{1} & = t_{b} + \left( \frac{\frac{1}{4}n - f_{k}}{f_{Q_{1}}} \right)c \\
& = 70,5 + \left( \frac{\frac{1}{4} \cdot 40 - 9}{20} \right)10 \\
& = 70,5 + \left( \frac{10 - 9}{20} \right)10 \\
& = 70,5 + \left( \frac{1}{20} \right)10 \\
& = 70,5 + \frac{1}{2} \\
& = 71
\end{align} $
$\therefore$ Pilihan yang sesuai $(C)\ 71$
4. Soal UM UNDIP 2010 (*Soal Lengkap)
Diberikan data pada tabel berikut:
Jika pada tabel ini kuartil atas adalah $75,75$. Maka nilai $x$ adalah...
Titik Tengah Frekuensi $52$ $4$ $57$ $6$ $62$ $8$ $67$ $10$ $72$ $14$ $77$ $x$ $82$ $6$
$\begin{align}
(A)\ 9 \\
(B)\ 10 \\
(C)\ 11 \\
(D)\ 12 \\
(E)\ 13
\end{align} $
Pada tabel yang disajikan adalah titik tengah kelas dan frekuensi.
Jika masih terbiasa dengan tabel yang umum (*dibangun dengan menggunakan aturan sturgess) maka tabel bisa kita ubah terlebih dahul ke bentuk yang umum.
Panjang kelas pada tabel diatas adalah $5$ yang kita peroleh dari selisih titik tengah kelas pertama dan kelas kedua.
Titik tengah kelas adalah setengah dari Batas Atas ditambah Batas Bawah.
$x_{i}=\frac{1}{2} (BA+BB)$
Untuk kelas 1:
$52=\frac{1}{2} (BA+BB)$
Cari bilangan dimana nilai tengahnya $52$ dengan panjang kelas $5$ (*jika panjang kelas $5$ maka selisihnya adalah $4$), yaitu $52-2=50$ dan $52+2=54$.
kita peroleh kelas 1: $50-54$
Untuk kelas 2:
$57=\frac{1}{2} (BA+BB)$
Cari bilangan dimana nilai tengahnya $57$ dengan panjang kelas $5$ (*jika panjang kelas $5$ maka selisihnya adalah $4$), yaitu $57-2=55$ dan $57+2=59$.
kita peroleh kelas 2: $55-59$
dan seterusnya tabel lengkapnya seperti dibawah ini;
Nilai | Frekuensi |
$50-54$ | $4$ |
$55-59$ | $6$ |
$60-64$ | $8$ |
$65-69$ | $10$ |
$70-74$ | $14$ |
$75-79$ | $x$ |
$80-84$ | $6$ |
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=48+x$.
Karena $Q_{3}=75,75$ maka letak $Q_{3}$ berada pada kelas $75-79$.
Tepi bawah kelas $Q_{3}$: $75-79$
$t_{b}= 75 - 0,5 = 74,5 $
Frekuensi kumulatif sebelum kelas $Q_{3}$,
$f_{k}= 4+6+8+10+14=42$
Frekuensi kelas $Q_{3}$, $f_{Q_{3}}=x$
Panjang kelas $c=5$
$ \begin{align}
Q_{3} & = t_{b} + \left( \frac{\frac{3}{4}n - f_{k}}{f_{Q_{3}}} \right)c \\
75,75 & = 74,5 + \left( \frac{\frac{3}{4} \cdot (48+x) - 42}{x} \right)5 \\
75,75 - 74,5 & = \left( \frac{\frac{3}{4} \cdot (48+x) - 42}{x} \right)5 \\
1,25 & = \left( \frac{\frac{3}{4} \cdot (48+x) - 42}{x} \right)5 \\
1,25\ x & = \left( \frac{3}{4} \cdot (48+x) - 42 \right) 5 \\
1,25\ x & = \left( 36+ \frac{3}{4} x - 42 \right)5 \\
1,25\ x & = \left( \frac{3}{4} x - 6 \right)5 \\
1,25\ x & = 3,75\ x - 30 \\
30 & = 3,75\ x - 1,25\ x \\
30 & = 2,5\ x \\
x & = \frac{2}{5} \cdot 30 \\
x & = 12
\end{align} $
$\therefore$ Pilihan yang sesuai $(D)\ 12$
5. Soal UM UNDIP 2011 (*Soal Lengkap)
Diberikan tabel distribusi frekuensi sebagai berikut:
Median dari tabel di atas adalah...
Titik Tengah Frekuensi $31$ $2$ $36$ $3$ $41$ $6$ $46$ $15$ $51$ $14$
$\begin{align}
(A)\ 46,45 \\
(B)\ 46,50 \\
(C)\ 46,55 \\
(D)\ 46,65 \\
(E)\ 46,75
\end{align} $
Pada tabel yang disajikan adalah titik tengah kelas dan frekuensi.
Jika masih terbiasa dengan tabel yang umum (*dibangun dengan menggunakan aturan sturgess) maka tabel bisa kita ubah terlebih dahul ke bentuk yang umum.
Panjang kelas pada tabel diatas adalah $5$ yang kita peroleh dari selisih titik tengah kelas pertama dan kelas kedua.
Titik tengah kelas adalah setengah dari Batas Atas ditambah Batas Bawah.
$x_{i}=\frac{1}{2} (BA+BB)$
Untuk kelas 1:
$31=\frac{1}{2} (BA+BB)$
Cari bilangan dimana nilai tengahnya $31$ dengan panjang kelas $5$ (*jika panjang kelas $5$ maka selisihnya adalah $4$), yaitu $31-2=29$ dan $31+2=33$.
kita peroleh kelas 1: $29-33$
Untuk kelas 2:
$36=\frac{1}{2} (BA+BB)$
Cari bilangan dimana nilai tengahnya $36$ dengan panjang kelas $5$ (*jika panjang kelas $5$ maka selisihnya adalah $4$), yaitu $36-2=34$ dan $36+2=38$.
kita peroleh kelas 2: $34-38$
dan seterusnya tabel lengkapnya seperti dibawah ini;
Nilai | Frekuensi |
$29-33$ | $2$ |
$34-38$ | $3$ |
$39-43$ | $6$ |
$44-48$ | $15$ |
$49-53$ | $14$ |
Median $(Me)$ sama nilainya dengan kuartil kedua $(Q_{2})$, jadi proses kerjanya adalah sama.
Data pada tabel dapat kita hitung yaitu total frekuensi adalah $n=40$.
Untuk menentukan letak $Me$ ada pada data ke- $\left[\frac{1}{2}(n+1) \right]$
$Me$ terletak pada data ke- $\left[\frac{1}{2}(40+1) \right]=20,5$
$Me$ pada data ke-$20,5$ artinya $Me$ berada pada kelas interval $44-48$
Tepi bawah kelas $Me$: $44-48$
$t_{b}= 44 - 0,5 = 43,5 $
Frekuensi kumulatif sebelum kelas $Me$,
$f_{k}= 2+3+6=11$
Frekuensi kelas $Me$, $f_{Me}=15$
Panjang kelas $c=33,5-29,5=4$
$ \begin{align}
Me & = t_{b} + \left( \frac{\frac{1}{2}n - f_{k}}{f_{Me}} \right)c \\
& = 43,5 + \left( \frac{\frac{1}{2} \cdot 40 - 11}{15} \right)5 \\
& = 43,5 + \left( \frac{20 - 11}{15} \right)5 \\
& = 43,5 + \left( \frac{9}{15} \right)5 \\
& = 43,5 + \frac{45}{15} \\
& = 43,5 + 3 \\
& = 46,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 46,50$
6. Soal UM STIS 2011 (*Soal Lengkap)
Daftar distribusi frekuensi pada tabel berikut merupakan hasil dari suatu tes.
Jika $60\%$ siswa dinyatakan lulus, nilai terendah yang dinyatakan lulus adalah...
Nilai Ujian Frekuensi $11-20$ $3$ $21-30$ $7$ $31-40$ $10$ $41-50$ $16$ $51-60$ $20$ $61-70$ $14$ $71-80$ $10$ $81-90$ $6$ $91-100$ $4$
$\begin{align}
(A)\ & 45,0 \\
(B)\ & 48,5 \\
(C)\ & 50,5 \\
(D)\ & 51,0 \\
(E)\ & 55,5 \\
\end{align}$
Dari tabel yang disajikan, disampaikan bahwa yang lulus adalah $60\%$ dari total keseluruhan siswa.
Siswa yang lulus adalah $60\% \times 90=54$. Jika tabel di atas kita bagi dua, dengan pembagian tabel yang lulus dengan yang tidak lulus, menjadi seperti berikut ini;
Siswa Tidak Lulus | |
---|---|
Nilai Ujian | Frekuensi |
$11-20$ | $3$ |
$21-30$ | $7$ |
$31-40$ | $10$ |
$41-50$ | $16$ |
Jumlah | $36$ |
Siswa Lulus | |
---|---|
Nilai Ujian | Frekuensi |
$51-60$ | $20$ |
$61-70$ | $14$ |
$71-80$ | $10$ |
$81-90$ | $6$ |
$91-100$ | $4$ |
Jumlah | $54$ |
$\therefore$ Pilihan yang sesuai adalah $(D)\ 51,0$
7. Soal UNBK Matematika SMA IPA 2019 (*Soal Lengkap)
Perhatikan histogram data hasil pengukuran berat badan sekelompok domba berikut ini.
Kuartil bawah dari data tersebut adalah...
$\begin{align}
(A)\ 43,19\ kg \\
(B)\ 46,27\ kg \\
(C)\ 46,88\ kg \\
(D)\ 47,28\ kg \\
(E)\ 56,00\ kg
\end{align} $
Kuartil adalah suatu nilai pembatas yang membagi data menjadi empat bagian yang sama besar setelah diurutkan dari yang terkecil ke terbesar.
Kuartil terdiri dari tiga jenis yaitu kuartil pertama $(Q_{1})$ yang disebut juga kuartil bawah, Kuartil kedua $(Q_{2})$ yang disebut juga median atau nilai tengah, dan Kuartil ketiga $(Q_{3})$ yang disebut juga kuartil atas.
Jika histogram di atas kita sajikan dalam bentuk tabel, seperti berikut;
Berat | Frekuensi |
$36-40$ | $3$ |
$41-45$ | $5$ |
$46-50$ | $13$ |
$51-55$ | $10$ |
$56-60$ | $6$ |
$61-65$ | $3$ |
Jumlah | $40$ |
$Q_{1}$ terletak pada data ke- $\left[\frac{1}{4}(40+1) \right]=10,25$
$Q_{1}$ pada data ke-$10,25$ artinya $Q_{1}$ berada pada kelas interval $46-50$
Tepi bawah kelas $Q_{1}$: $46-50$
$t_{b}= 46 - 0,5 = 45,5 $
Frekuensi kumulatif sebelum kelas $Q_{1}$,
$f_{k}= 3+5=8$
Frekuensi kelas $Q_{1}$, $f_{Q_{1}}=13$
Panjang kelas $c=50,5-46,5=5$
$ \begin{align}
Q_{1} & = t_{b} + \left( \frac{\frac{1}{4}n - f_{k}}{f_{Q_{1}}} \right)c \\
& = 45,5 + \left( \frac{\frac{1}{4} \cdot 40 - 8}{13} \right) 5 \\
& = 45,5 + \left( \frac{10 - 8}{13} \right) 5 \\
& = 45,5 + \left( \frac{2}{13} \right) 5 \\
& = 45,5 + \frac{10}{13} \\
& = 45,5+0,77 \\
& = 46,27
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 46,27\ kg$
8. Soal UNBK Matematika SMA IPA 2019 (*Soal Lengkap)
Tabel berikut menyatakan hasil penilaian guru terhadap kemampuan pelajaran fisika dari $70$ orang siswa.
Modus dari data pada tabel tersebut adalah...
Nilai Frekuensi $34-38$ $5$ $49-43$ $9$ $44-48$ $14$ $49-53$ $20$ $54-58$ $16$ $59-63$ $6$
$\begin{align}
(A)\ 49,5 \\
(B)\ 50,5 \\
(C)\ 51,5 \\
(D)\ 52,5 \\
(E)\ 53,5
\end{align}$
Modus adalah nilai yang paling sering muncul atau frekuensi yang paling besar.
Untuk data tunggal modus suatu data mudah ditemukan, tetapi untuk data berkelompok modus data sedikit lebih rumit.
Modus data berkelompok dirumuskan seperti berikut ini;
$Mo = Tb_{mo} + \left( \frac{d_1}{d_1 + d_2} \right) c$
dimana;
$Tb_{mo}:$Tepi bawah kelas modus, dan Kelas modus adalah kelas dengan frekuensi paling besar.
Dari tabel terlihat bahwa kelas yang memiliki frekuensi tertinggi adalah kelas $49-53$ dengan frekuensi $20$, maka kelas modusnya adalah kelas ke-4 dengan interval $49-53$; $(Tb_{mo} = 49 - 0,5 = 48,5)$;
$d_1:$ Selisih frekuensi kelas modus dengan kelas sebelum kelas modus; $(d_{1}=20-14=6)$;
$d_2:$ Selisih frekuensi kelas modus dengan kelas sesudah kelas modus; $(d_{2}=20-16=4)$;
$c:$ Panjang Kelas $(c=53,5-48,5=5)$;
$ \begin{align}
Mo & = Tb_{mo} + \left( \frac{d_1}{d_1 + d_2} \right) c \\
& = 48,5 + \left( \frac{6}{4 + 6} \right) \cdot 5 \\
& = 48,5 + \left( \frac{4}{10} \right) \cdot 5 \\
& = 48,5 + \frac{20}{10} \\
& = 48,5 + 2 \\
& = 50,5
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ 50,5$
Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan" ___pythagoras
Beberapa pembahasan soal Matematika Dasar ini merupakan bagian dari catatan calon guru tentang Statistika Data Berkelompok (*Soal Dari Berbagai Sumber) di atas adalah coretan kreatif siswa pada- lembar jawaban penilaian harian matematika,
- lembar jawaban penilaian akhir semester matematika,
- presentasi hasil diskusi matematika atau
- pembahasan quiz matematika di kelas.
Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊
Video pilihan khusus untuk Anda 😊 Matematika;
Selain sebagai media informasi pendidikan, kami juga berbagi artikel terkait bisnis.